Dynamic changes in heat transducing channel TRPV1 expression regulate mechanically insensitive, heat sensitive C-fiber recruitment after axotomy and regeneration.

نویسندگان

  • Michael P Jankowski
  • Deepak J Soneji
  • Katrina M Ekmann
  • Collene E Anderson
  • H Richard Koerber
چکیده

Peripheral injury leads to a significant increase in the prevalence of mechanically insensitive, heat-sensitive C-fibers (CH) that contain the heat transducing TRPV1 (transient receptor potential vanilloid type I) channel in mice. We have recently shown that this recruitment of CH fibers is associated with increased expression of the receptor for GDNF (glial cell line-derived neurotrophic factor) family neurotrophic factor artemin (GFRα3), and that in vivo inhibition of GFRα3 prevented the increase in TRPV1 expression normally observed following axotomy. Here we have directly tested the hypothesis that the recruitment of functional CH fibers following nerve regeneration requires enhanced TRPV1 levels. We used in vivo siRNA-mediated knockdown to inhibit the injury-induced expression of TRPV1 coupled with ex vivo recording to examine response characteristics and neurochemical phenotypes of different functionally defined cutaneous sensory neurons after regeneration. We confirmed that inhibition of TRPV1 did not affect the axotomy-induced decrease in polymodal C-fiber (CPM) heat threshold, but transiently prevented the recruitment of CH neurons. Moreover, a recovery of TRPV1 protein was observed following resolution of siRNA-mediated inhibition that was correlated with a concomitant rebound in CH neuron recruitment. Thus dynamic changes in TRPV1 expression, not absolute levels, may underlie the functional alterations observed in CH neurons and may contribute to the development of heat hyperalgesia after nerve injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced artemin/GFRα3 levels regulate mechanically insensitive, heat-sensitive C-fiber recruitment after axotomy and regeneration.

We have shown recently that following saphenous nerve transection and successful regeneration, cutaneous polymodal nociceptors (CPMs) lacking transient receptor potential vanilloid 1 (TRPV1) are sensitized to heat stimuli and that mechanically insensitive, heat-sensitive C-fibers (CHs) that contain TRPV1 increase in prevalence. Target-derived neurotrophic factor levels were also enhanced after ...

متن کامل

Sensitization of cutaneous nociceptors after nerve transection and regeneration: possible role of target-derived neurotrophic factor signaling.

Damage to peripheral nerves is known to contribute to chronic pain states, including mechanical and thermal hyperalgesia and allodynia. It is unknown whether the establishment of these states is attributable to peripheral changes, central modifications, or both. In this study, we used several different approaches to assess the changes in myelinated (A) and unmyelinated (C) cutaneous nociceptors...

متن کامل

Cutaneous C-polymodal fibers lacking TRPV1 are sensitized to heat following inflammation, but fail to drive heat hyperalgesia in the absence of TPV1 containing C-heat fibers

BACKGROUND Previous studies have shown that the TRPV1 ion channel plays a critical role in the development of heat hyperalgesia after inflammation, as inflamed TRPV1-/- mice develop mechanical allodynia but fail to develop thermal hyperalgesia. In order to further investigate the role of TRPV1, we have used an ex vivo skin/nerve/DRG preparation to examine the effects of CFA-induced-inflammation...

متن کامل

Age-dependent sensitization of cutaneous nociceptors during developmental inflammation

BACKGROUND It is well-documented that neonates can experience pain after injury. However, the contribution of individual populations of sensory neurons to neonatal pain is not clearly understood. Here we characterized the functional response properties and neurochemical phenotypes of single primary afferents after injection of carrageenan into the hairy hindpaw skin using a neonatal ex vivo rec...

متن کامل

Myelinated mechanically insensitive afferents from monkey hairy skin: heat-response properties.

To compare the heat responses of mechanically sensitive and mechanically insensitive A-fiber nociceptors, an electrical search technique was used to locate the receptive fields of 156 A-fibers that innervated the hairy skin in the anesthetized monkey (77 A beta-fibers, 79 A delta-fibers). Two-thirds of these afferents were either low-threshold mechanoreceptors (n = 91) or low-threshold cold rec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 32 49  شماره 

صفحات  -

تاریخ انتشار 2012